Tuesday, July 24, 2007

A model of neurocognitive function in spina bifida over the life span

Dennis M, Landry SH, Barnes M, Fletcher JM. A model of neurocognitive function in spina bifida over the life span. Journal of the International Neuropsychological Society. 2006 Mar;12(2):285-96. Review.

Spina bifida myelomeningocele (SBM), a neural tube defect that is the product of a complex pattern of gene-environment interactions, is associated with naturally occurring, systematic variability in the neural phenotype and in environmental factors that lead to systematic variability in the cognitive phenotype. We characterize the basis for variability in the cognitive phenotype of children with SBM with reference to a model of key biological, cognitive, and environmental events unfolding over the course of development from infancy to middle age. The cognitive phenotype is not domain-specific, but represents manifestations of unobservable constructs involving associative and assembled processing, the latter directly reflecting the impact of the neural phenotype on core deficits involving movement, timing, and attention orienting. The expression of the cognitive phenotype is variable, being moderated by features of the neural phenotype involving secondary CNS insults (such as hydrocephalus) that impair assembled processing, as well as by environmental factors (such as poverty, parenting, and education) that impair associative processing. The preservation of strengths in associative processing depends in part on the severity of the CNS deficits in SBM and the impact of the environment.

PMID: 16573862

No comments: